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Abstract 

Can large dams keep the floods at bay? In the last twenty years, major flood 
events in India have wreaked widespread destruction on people‘s lives and 
livelihoods. With a threefold increase in extreme rainfall event in these years, 
severe flood damages are likely to increase without proper risk management. 
The increasing trend in constructing dams necessitates careful assessment of 
the effectiveness of these projects as a flood adaptation measure.  The study 
employs a state-level dataset of India for 1969-2009 on flood damages, 
monthly average rainfall, and concentration of types of dams in each state 
taking 2001 census defined state borders. The analysis uses Feasible 
Generalized Least Squares for estimation, while employing panel corrected 
standard errors to correct for contemporaneous correlation in the dataset. 
Controlling for population density, dam concentration and unobserved 
regional heterogeneity, the study finds significant adverse impact of extreme 
rainfall on population during the South-West and North-East monsoon 
periods. The results highlight that large dams built for irrigation and 
hydroelectric power generation have historically exacerbated flood damages, 
whereas multipurpose dams have reduced such damages marginally. As the 
frequency and intensity of extreme rainfall events and floods are likely to 
increase under climate change conditions, the potential of mitigation 
measures such as Dam Safety Act 2021 and Flood Early Warning System 
(FLEWS) in averting flood damages assumes significance. 
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INTRODUCTION 

In recent years, the world has experienced several unprecedented floods 

due to climate change (Huber  and  Gulledge, 2011), much of which is 

concentrated in South and South East Asia. These events are often 

related to cyclones, cloudburst, and high tides, or a combination thereof, 

which hamper economic activities (Davenport et. al., 2021; Paprotny et. 

al., 2018; Tazen et. al., 2018; Chen et. al., 2020; Yan et. al., 2021). India 

is no different with a projected increase in flood events in future (Ali et. 

al., 2019). Goswami et. al. (2006) found strong influence of sea surface 

temperature anomalies over the tropical Indian Ocean on the coefficient 

of variability of daily precipitation during summer monsoon season. 

Linking this increasing trend to erratic precipitation patterns, Chaudhuri 

et. al. (2010) and Chowdary et. al. (2019) among others, found out that 

Indian summer monsoon rainfall and circulation has become anomalous. 

Needless to say, the consequences translate to significant unplanned 

costs on various economic agents leading to loss of welfare. Significant 

human and economic impact of extreme weather events like floods is 

well documented in India (see, Parida, 2020; Parida et. al., 2021). 

 

The capacity to undertake adaptation measures by different 

stakeholders is often determined by their income, social institutions they 

live in, cognitive abilities, etc. Simultaneously, mitigation and adaptation 

of large scale disasters fall under the scope of national governments and 

international organizations. These measures, which may include large or 

small scale interventions, provide better results when not left in the 

hands of private sectors (Patt et. al., 2010). Government intervention and 

programs have often ignored their long run impacts in view of short term 

gains (Cimato and Mullan, 2010).  One such policy measure that was 

implemented worldwide during the second half of last century is 

construction of Dams. Developing countries have used dam as a 

multifaceted tool to address welfare issues like poverty alleviation 

through irrigation and flood control. Dams were viewed as a vehicle of 

development and the Multi-purpose River Valley Development (MPRVD) 



2 

projects gained significant momentum in India around the time of its 

independence. Construction of Dams in India had found its origin in the 

Keynesian fiscal stimulus approach in the context of the US macro-

economic planning to stave off economic depression like situations 

(D'Souza, 2003). Institutions like World Bank believed that the answer to 

poverty alleviation of developing countries lie in the power to tame the 

gorging rivers which led them to undertake investments making them the 

largest financier of large dam construction in the early 1970s (Goodland, 

2010). Dam construction helped in bringing more cropland under 

irrigation, harnessing ―cheap‖ power and facilitating a growth path. 

However, these interventions ignored the consequences of water salinity, 

erosion of watersheds, mass displacement of people, devastating 

changes in ecosystems, and drastic modification of geographical terrain. 

In spite of these adverse effects associated with dams, India has seen a 

large increase in dam construction since 1971. As of 2017, India had 

5264 Large dams with 437 additional dams under construction (National 

Register of Large Dams, 2018). Once constructed, dams are irreversible 

investments. While weather extremes, particularly rainfall variability and 

extremes were not a policy concern in 1980s, constructed dams now 

pose threats when exposed to the increased variability in precipitation 

and rainfall extremes. Given the precipitation anomalies in recent 

decades, it is important to evaluate whether dams mitigate flood risks or 

not, especially in the emergence of climate change and associated 

unpredictable risks. A recent assessment of large Indian dams (Central 

Water Commission, 2020) has shown higher than design rate of 

sedimentation in the dams on east flowing rivers of India, and on the 

rivers of Indo-Gangetic plains. Higher sedimentation rate translates to 

loss of live storage capacity of reservoirs. This increases the probability of 

a flood in the catchment area and release of debris downstream.  

 

In the last six decades, India has lost approximately Rs. 4.7 

trillion (in current prices) and 1695 lives on an average to flood (CWC, 

2019). According to the Jal Shakti Ministry of India, India has suffered a 

loss of Rs. 95,736 crore in 2018 floods – a three-fold increase to the 
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financial loss due to floods in 2017. In the last two decades, extreme 

rainfall events have increased steadily in North, North East, and South 

India due to possible rise in sea surface temperature leading to floods 

(Mukherjee et. al., 2018). With a rise in flood intensity, flood damages 

have also increased. Chennai floods in 2002, 2005, and 2015, the 

Mumbai floods of 2005 and 2021, 2013 Kedarnath flood, and 2018 Kerala 

flood are some of the notorious flood events in the recent history of 

India. In 2020, India faced three deadly flooding events – one in West 

Bengal and Jharkhand due to Cyclone Amphan, one in Assam and 

Meghalaya due to extreme rainfall, and one in Bihar due to sudden 

downpour in Nepal. Fortunately, with technological development, losses 

can be prevented with early warning systems (Perera et. al., 2019). 

However, India is still in the early stages of implementation of automated 

Flood Early Warning Systems (FLEWS), developed jointly by The Energy 

and Resources Institute (TERI) and National Disaster Management 

Authority (NDMA). If the existing and under construction dams are more 

likely to facilitate flooding events as argued above, then a case can be 

made for speedier implementation of early warning systems and other 

technological solutions for reducing the flood induced losses. 

 

This study empirically estimates the flood damage function and 

examines the role dams have historically played as an adaptation 

measure to extreme rainfall induced floods in India. The study assesses 

flood vulnerability in relation to summer monsoon (June-September) 

rainfall variability, and winter monsoon (October-December) rainfall 

variability separately. The study relies on a state-level panel dataset from 

1969 to 2009 which combines flood damages data for 25 states, monthly 

precipitation data for each state, number of dams in the states, and other 

control variables including typology of dams and region-specific 

characteristics. Rest of the paper is organized as follows. The next 

section discusses the relation between floods, extreme rainfall events, 

and dams which is followed by description of the data employed in this 

study. In the sections that follow, methodology along with variable 

construction is discussed, which is followed by the results. The last 
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section discusses the limitations along with the findings and policy 

implications of the study and provides conclusions.  

 

Rainfall Shocks, Flood Damages and Dams 

Floods cause damage through impact on houses, infrastructure, 

agricultural produce, human lives, livestock, or through its impact on 

livelihoods due to migration, or via impact on ecological conditions like 

soil composition, quality of watershed, groundwater recharge capacity, 

etc. India has suffered from floods owing to the complex river system 

that crosses its geographical area, coupled with extreme rainfall events, 

and environment-endangering human activities. 

 

Assessment of flood induced damages depends on the nature of 

damage. In addition to the often accounted direct impacts such as loss of 

property, damage to infrastructure, crop losses, and human and livestock 

losses, floods can also cause indirect impacts. Such indirect impacts due 

to floods can be either permanent or temporary. Affected residents might 

have to move out and seek shelter till the flood water recedes, leading to 

temporary migration which reduces the intensity of economic activities in 

flooded regions and generates pressure in regions to which the 

population migrates (Wamer  and  Afifi, 2014). Short term migration due 

to flood can act as a social stressor through potential unemployment, 

lack of entitlements, and a burden for future sustenance (Carleton  and  

Hsiang, 2016). Further, flood damages can induce permanent loss such 

as psychological trauma, leading to loss of standard of living and mental 

health, endangering the factors of production. 

  

Increased variability in rainfall and/or extreme weather patterns 

along with tropical storms have often been associated with consequent 

landslides, loss of business, loss of lives and livelihoods and irreparable 

ecosystem damages. Rainfall anomalies therefore posit randomness in 

risk structure making risks unpredictable and forecasting exercise 

erroneous. Available response strategies also provide limited options to 

hedge against such risks completely. Available evidence suggests that the 
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forecasting of extreme precipitation events is still imprecise in India 

(Shastri et. al., 2017). In case of consequent floods, forecasting gets 

further complicated due to the complex local environmental feedback 

system. 

 

Although dams could act as an adaptive measure against rainfall 

induced floods, they may also exacerbate vulnerabilities during extreme 

rainfall events (Thakkar, 2018). In terms of irrigation benefits, Duflo and 

Pande (2007) assessed the distributional effects of dams across Indian 

districts for 1971 to 1999. The results clearly showed that while the 

downstream regions reap the benefits from large irrigation dams, 

upstream regions bear the cost of watershed erosion, water turbidity, 

and other similar social costs. During extreme rainfall, a dam may put 

both upstream and downstream regions vulnerable to flood. As of 2017, 

India had 5254 dams with another 447 dams under construction. These 

dams are often managed by different authorities, bringing on board lack 

of communication and coordination on managing them. Water surge from 

extreme rainfall transcend both state and national administrative 

boundaries. Coordination failure aggravates the cascading effect of dam 

failure due to jurisdiction red tapes (Pathak, 2020). According to the CAG 

report submitted to the parliament in 2017, only 7 percent of the 

constructed dams have emergency plans (CAG, 2017). In the last two 

decades, severe floods were often associated with dam failures and 

breached embankments (Thakkar, 2018). Against this backdrop, it is 

pertinent to explore whether construction of more dams makes a region 

more susceptible to disaster risk, and reassess the role of dams in 

enhancing adaptive capacity besides serving as development investment. 

Despite being a contentious topic in the policy arena (Damle, 2021), 

there has been relatively less empirical evidence on the role played by 

the dams in the event of extreme rainfall.  The present study focuses on 

this aspect and employs statistical analysis to gain insight on 

interlinkages between flood damages, rainfall, and presence of dams in 

India.  
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Data 

The objective of the study is two pronged – to assess whether extreme 

rainfall shocks caused floods, and, to analyse if dams helped in reducing 

the corresponding flood damages. The study focuses on 25 Indian states 

over the time period 1969-2009. The data used for analysis can be 

categorized as outcome data on flood damages, weather data on 

precipitation, and covariate data on dams and state-wise population.  

 

Outcome Data 

The flood damages data for every state over the period 1969-2009 has 

been gathered from Central Water Commission (2018) report on Flood 

Statistics from 1953-2016. It reports 10 different statistics for flood 

damages including, area affected (Million Hectares), population affected 

(Millions), damages to crops (Rs. in crore), value of house damage (Rs. 

in crore), human lives lost, cattle lost, number of house damaged, 

damage to public utilities (Rs. in crore) and also total damages for each 

year (Rs. in crore). After India‘s independence, the Indian state 

administrative boundaries have undergone periodic changes until 1966-

67 which involved transfer of several sub-regions of one state to another. 

With a two-year transition period for all administrative records and 

databases, the collected flood statistics at the state level after 1969 can 

be considered consistent. Hence 1969 was treated as the starting period 

for the study‘s analysis. Data for the states of Jharkhand, Chhattisgarh, 

and Uttarakhand, carved out in 2000-01, were merged with their 

corresponding parent states. 

 

Weather Data (Precipitation) 

Precipitation data have been sourced from India Meteorological 

Department (IMD). The data is given as total precipitation (in mm) per 

month for each month of each year from 1969-2009.  

 

Dams Data 

The dams data have been compiled from the National Register of Large 

Dams (NRLD) which includes all dams in each state with names, year of 
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completion, geographical attributes and several dam specific attributes 

like gross storage capacity, effective storage capacity, volume, height, 

designed spillway capacity, etc. According to the International 

Commission on Large Dams (ICOLD), ―a large dam is classified as one 

with a maximum height of more than 15 metres from its deepest 

foundation to the crest.‖ Other dams with heights between 10 to 15 

metres have also been included in the classification of a large dam 

provided the dam satisfies certain conditions. The candidate dam should 

have either a length of crest of the dam which is not less than 500 

metres; or, capacity of the reservoir formed by the dam is not less than 

one million cubic meters; or, the maximum flood discharge dealt with by 

the dam is not less than 2000 cubic meters per second; or, the dam has 

special difficult foundation problems; or, the dam is of unusual design 

(CWC, 2018). Dams construction in India since 2000 has slowed down 

significantly.1 Keeping this in view and the long gestation period 

pertaining to dams construction, the first decade of the 21st century was 

included for the analysis. 

 

State-Wise Population Data 

State-wise total population data was sourced from Handbook of Statistics 

on Indian States 2018-2019 (RBI, 2019) which tabulates the census data 

of population for the Census years of 1951, 1961, 1971, 1981, 1991, 

2001, 2011. The population data for the non-Census years was assessed 

through linear interpolation. 

 

METHODOLOGY 

Variables Construction 

To assess the effect of rainfall on floods damages the study takes into 

account two types of weather variables – rainfall anomalies and extreme 

rainfall events. Rainfall anomalies are defined as deviation of each rainfall 

realization from its long-term average. Let     be the observed rainfall (in 

                                                 
1 During 2000-2009 a total of 664 dams have been completed, compared to almost eight times higher 

number between the period 1969-2000. 
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mm) during South-West (henceforth JJAS, referring to the months June, 

July, August, and September),  or North-East (henceforth OND, referring 

to the months October, November, and December) legs of monsoon for ith 

state in tth year. Let  ̅  denote the long term (41 year) rainfall average for 

ith state. Then rainfall anomaly is defined as       ̅  . The standard 

deviation of rainfall for ith state,   , captures the variability in rainfall and is 

used to standardize the rainfall anomaly. The standardized rainfall 

anomaly denoted by SAit is then defined as: 

 

     
     ̅ 

  

 

 

The extreme rainfall variable takes into account the extremities of 

the observed rainfall for each month of the year. The variable is defined 

as a binary variable. Let  ̅  be the national monthly average for year t and 

   be the standard deviation of national rainfall for that month of year t. 

Let Rit denote the monthly extreme rainfall event observed. Then, 

 

              ̅      

              ̅     

 

Therefore, a state records extreme rainfall event in a month if the 

recorded rainfall in that state during the month is more than one standard 

deviation of the national average for the month under consideration in 

year t. 

 

The study uses flood affected population as its outcome variable. 

Through their effect on population, floods affect drivers of the economic 

activities of a state, indirectly harming and halting businesses, 

organizations, livelihood and standard of living. Limited number of studies 

use population affected data in econometric modeling of flood damages 

assessment due to its unreliability on account of poor reporting of such 

events and the role played by socio-political factors. The alternative is to 

use assessed value of damages in monetary terms. Central Water 
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Commission (CWC) of India collects damage assessment reports from 

state governments and several disaster management agencies. As 

centralized process of data collection becomes riddled with uncertainty 

due to temporary population movement, reliability of the monetary 

damage estimates may be questioned. Total damages, value of crop 

damages, value of damages to public utilities as reported by CWC (2018) 

are expressed in monetary terms where the money metric, the price, 

remains in blur. Moreover, these estimates do not always rely on surveys 

of the affected population since transaction costs to conduct surveys tend 

to be high. Further, in a decentralized setup, individuals reporting their 

own damage during a survey may also inflate their reported estimates. 

However, such measurement errors may be systematically upward biased 

and may not interfere with the damage distribution and damage function 

estimation. Given this background, the statistic on flood affected 

population is used as the relevant outcome variable for its relative 

superiority over the other damage statistics reported by CWC (2018).  

 

Base analysis of the study uses natural log of flood affected 

population. The study further uses the statistic on flood affected 

population to construct two new variables, namely proportion of 

population affected and mean absolute deviation of affected population 

from the long-term average. Let     and     denote the flood affected 

population and total population respectively, for ith state in tth year. 

Proportion of population affected by occurrence of flood is defined as 

     
   

   
 . The mean of absolute deviation of population affected is 

defined as       
∑ |     ̅ |
  
   

  
, where   ̅ is the long-term average of 

population affected for ith state, and the denominator captures the number 

of years over which the data is used.  

 

Early warning systems often play a key role in minimizing the 

population affected due to floods. However, due to unavailability of state-

specific early warning system information the study could not include the 

controls for the same.  
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As dams could be viewed as an instrument for adaptation to 

rainfall extremes, number of dams could capture the capacity of a state to 

adapt to rainfall shocks. As a country develops, developmental 

infrastructures like dams will accumulate in a region. Therefore, the dam 

variable, defined as the number of large dams in a state, increases over 

time. The dam variables have been constructed from NRLD Report 2018 

(CWC, 2018) based on the total number of dams in each state constructed 

for Irrigation, Hydroelectric Power Generation and Multipurpose. 

Multipurpose subsumes all the categories barring irrigation and hydel 

power, that is, it includes water supply dams, flood control dams, fishery 

reservoirs and a combination of two or more purposes. It may be noted 

that dams considered for the analysis are large dams and, therefore, do 

not include small dams or dykes. Dam variables used in the econometric 

models include the number of each type of dams whose construction was 

completed in a given year for a given state and the total number of dams; 

(i.e., an aggregate of the three categories), for each year in each state. 

 

The study introduces population density to control for increasing 

population in a region which, over time, becomes vulnerable to calamities 

like floods. Population density for a state is defined as the ratio of 

population for that state in tth year and the geographical area of the state.   

 

As flood is a geographical phenomenon, it could be correlated 

with a number of unobserved spatial heterogeneous factors at a regional 

level rather than at state level. Including region fixed effects is therefore 

justified instead of state fixed effects. Regional dummy variables are 

constructed based on the region the state belongs to. Adhering to 

administrative boundaries, India can be classified into six regions, namely, 

North, East, West, South, Central and North-East (see Table 1). 
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Table 1: Classified Regions and Corresponding States 

Regions North North-East South Central East West 

States Jammu and 
Kashmir, 
Punjab, 

Haryana, Uttar 
Pradesh 

(including 
Uttarakhand) 

Himachal 
Pradesh. 

Arunachal 
Pradesh, 
Assam, 
Tripura, 

Meghalaya, 
Mizoram, 
Manipur, 
Nagaland, 

Sikkim. 

Andhra 
Pradesh, 

Karnataka, 
Tamil Nadu, 

Kerala 

Madhya 
Pradesh 

(including 
Chhattisgar)  
Maharashtra. 

West 
Bengal 
Bihar 

(including     
Jharkhand) 

Odisha. 

Gujarat, 
Rajasthan, 

Goa. 

 

The descriptive statistics of the variables used for analysis are 

presented in Table 2. The variable column lists the names of each variable 

along with their respective names in parentheses as used in the result 

tables hereafter. The total sample size of the pooled dataset is 1025. 

Natural logarithm of flood affected population has only 595 observations 

compared to two other outcome variables – mean absolute deviation of 

affected population and proportion of population affected. Moreover, the 

natural logarithm of the population affected has a highly skewed 

distribution. Relatively, the other two outcome variables are more 

centered. The JJAS and OND anomalies are observed to be highly varying 

across regions due to their path of movement over India. Standardization 

of these two anomalies reduces skewness and centers them around their 

mean as is evident from Table 2. 

 

The maximum number of dams variable shows the maximum 

number of the dam registered in a state. A large number of irrigation 

dams are located in places that record lower rainfall than the national 

average. For instance, in 2009, Maharashtra had a total of 1967 dams, 

1856 of which are for irrigation purposes. 

 



12 

Table 2: Descriptive Statistics 

Variables N Mean Std. 

Dev. 

Min Max 

Flood Damage Variable 

Natural Log of Population 595 -0.633 2.292 -6.908 3.413 

Affected (popaffl) 

Population affected 

anomaly 

1025 1.426 1.625 0.003 6.101 

(md_popaff) 

Proportion of Population 
Affected (prop_pop) 

804 0.0701 0.1816 0.000 3.35 

Rainfall Variables 

Mean Deviation of JJAS 995 -0.000153 353.452 -1711.72 4374.68 

rainfall (md_jjas) 

Mean Deviation of OND 1000 7.64e-07 100.298 -333.798 1144.10 

rainfall (md_ond) 

Standardized JJAS 
anomaly (a_jjas) 

995 6.31e-08 0.988 -2.782 3.942 

Standardized OND 
 Anomaly (a_ond) 

1000 7.36e-09 0.988 -2.311 4.910 

January Extreme  1025 0.144 0.352 0 1 

February Extreme 1025 0.159 0.366 0 1 

March Extreme 1025 0.189 0.392 0 1 

April Extreme 1025 0.187 0.390 0 1 

May Extreme 1025 0.187 0.390 0 1 

June Extreme 1025 0.153 0.360 0 1 

July Extreme 1025 0.140 0.348 0 1 

August Extreme 1025 0.136 0.343 0 1 

September Extreme 1025 0.164 0.370 0 1 

October Extreme 1025 0.161 0.368 0 1 

November Extreme 1025 0.145 0.353 0 1 

December Extreme 1025 0.131 0.337 0 1 
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Dam Variables 

Irrigation Dam (irr) 1014 122.1 288.953 0 1856 

Hydroelectric Dam (hydel) 1014 3.686 7.641 0 33 

Multipurpose Dam (multi) 1014 7.352 13.949 0 97 

Total Dams (total) 1025 131.709 301.186 0 1967 

Control Variable 

Population Density 
(popden) 

1025 0.000251 0.00021 0.000005
3 

0.001 

Source: Authors‘ own calculations  
Note:  The variable column lists the names of each variable along with their respective 

names in parentheses as used in estimates‘ tables hereafter. Population density 
(popden) is the number of people per square kilometer. 

 

Arid and semi-arid regions like Madhya Pradesh, Gujarat, and 

Rajasthan, in the same year, had 1087, 596 and 187 irrigation dams, 

respectively. States with higher altitude and steep gradients are not 

suitable for irrigation dams. Water stored in hydroelectric dams or 

multipurpose dams are often channelized through canals for irrigation 

purposes. Given heavy incidence of rainfall in mountain and hill states and 

choice of crops cultivated in these regions, irrigation dams are not needed. 

Thus, as of 2009, states like Himachal Pradesh, Haryana, Punjab, 

Arunachal Pradesh, Assam, Meghalaya, Mizoram, Nagaland, Sikkim, and 

Tripura had no irrigation dams. Tamil Nadu, surprisingly, has the largest 

number of Hydel Power Dams; 33 in total as of 2009. Despite being 

completely dependent on hydroelectricity, Arunachal Pradesh has 3 large 

pure hydel dams and 11 multipurpose dams. This signifies an overlap in 

the dam categorization used in the study. 

 

Model Specification 

The paper adopts the following general specification given in Eq. (1): 

 

                   ∑   
 
                               (1) 
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where, Z denotes one of the three flood damage (outcome) variables 

referred above, W is the vector of rainfall variables of interest, D is the 

dam variable of interest, H is the categorical variable for regions, and PD 

is the population density. The error term given by uit is assumed to be 

i.i.d. normally distributed with mean 0 and variance σ2. States, the unit of 

analysis, are denoted with i and years are denoted with t. The coefficients 

are interpreted as the estimated effect of a marginal increase in 

explanatory variable(s) on the dependent variable. 

 

Choice of Estimation Method 

Estimates of a panel fixed effects model with a large number of time units, 

and few cross-sectional units are likely to be biased and inconsistent due 

to presence of panel heteroskedasticity, autocorrelation, and cross-

sectional dependence. The panel dataset used in this study suffers from 

all the three issues. To overcome these issues, either Feasible Generalized 

Least Squares (FGLS), or Panel Corrected Standard Error (PCSE) model 

can be adopted. Given the finite sample properties of the FGLS method, 

both estimation procedures are used to evaluate rainfall and dam impacts 

on flood affected population. Moreover, standard errors of PCSE 

estimators are efficient with moderately higher time units compared to 

cross-sectional units (41 compared to 25 in the present case). 

 

With natural log of population affected (popaffl) as the dependent 

variable, Equation (1) is estimated using FGLS method. For the 

estimations based on PCSE method, to ensure a moderately large sample, 

the analysis uses proportion of flood affected population, given by PPit (as 

defined in the ‗Variables Construction‘ sub-section) as the outcome 

variable of interest. The rainfall variable correspondingly changes to 

standardized rainfall anomaly SAit. In this case, population density is not 

included as a control because the dependent variable accounts for the 

state population. While assessing the role played by the dams in the 

presence of extreme rainfall variables (RAit), deviations of flood affected 

population from long term mean (PAAi) are used as the relevant 

dependent variable. The rest of the model specification remains the same. 

Region and year fixed effects are subsequently introduced in the PCSE 

models. 



15 

RESULTS 

GLS Estimates 

Table 3 presents the FGLS estimates of the effects of rainfall anomalies on 

natural logarithm of flood affected population. While Cols 1-2 report 

estimates based on model specification that takes into account total 

number of dams, estimates reported in Cols. 3-4 consider different types 

of dams. Under each model specification, the estimated coefficients are 

reported with and without accounting for time fixed-effects. Unobserved 

regional heterogeneity has been taken into account under all specifications 

in Table 3. As expected, higher the population density implies more flood 

affected population. Estimated coefficients for absolute deviations of JJAS 

rainfall remain positive and significant across the variants of both models, 

while that of OND rainfall are negative and insignificant. Marginal increase 

in the deviations of JJAS by 1 mm will affect approximately 10000 

additional people, holding other variables constant. Estimates which 

account for the types of dams (Cols. 3-4) suggest that, hydel power 

dams significantly reduce flood damages; construction of one more 

hydel power dams significantly reduces flood damages on approximately 

0.6 million people (see Col. (4)), holding other variables fixed. Total 

number of dams in a state significantly reduces flood affected population 

(Cols. 1-2). Construction of one more dam helps in reducing population 

affected approximately by 8250 people, ceteris paribus. 
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Table 3: FGLS Estimates for Rainfall Anomaly 

VARIABLES (1) (2) (3) (4) 

     

md_jjas 0.000999*** 0.000776*** 0.00137*** 0.00127*** 
 (0.00017) (0.00019) (0.00019) (0.00021) 

md_ond -0.00068 -0.00084 -0.00061 -0.00097 
 (0.00066) (0.00077) (0.00068) (0.00079) 

irr   0.000216 9.94E-05 
   (0.0007) (0.00081) 

hydel   -0.0700*** -0.0639*** 

   (0.0208) (0.0204) 
multi  -0.174 -0.0166 

   (0.0174) (0.0192) 
total -0.000826* -0.00114**   

 (0.00046) (0.00053)   
popdenl 0.291** 0.281** 0.302** 0.311** 

 (0.128) (0.14) (0.139) (0.156) 
Constant 1.848 1.198 2.135* 1.956 

 (1.137) (1.299) (1.242) (1.444) 

     

Observations 589 589 585 585 

Time Effects N Y N Y 
Region Effects Y Y Y Y 
Note: Dependent variable is natural log of population affected (popaffl). Standard errors in 

parentheses, *** p<0.01, ** p<0.05, * p<0.1 

 

Table 4 showcases the GLS estimates of impacts of rainfall 

extremes. The model specifications are similar to those reported in Table 

3. Effects of extreme rainfall events for the month of January are 

estimated to be positive and significant implying an increase in flood 

affected population owing to extreme January month rainfall. Extreme 

rainfall events in July are negatively associated with flood damages, while 

June remains positive throughout. This indicates that extreme rainfall at 

the onset of the Monsoon (June-September) season may have different 

effect compared to their effect later during the Monsoon season. 

Historically higher rainfall experienced during the July month may also aid 

in lowering the extreme rainfall induced flood affected population. On the 

contrary, as discussed above, post-monsoon extreme rainfall during the 

winter month of January increases flood affected population.  
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Table 4: FGLS Estimates for Rainfall Extremes 

VARIABLES (1) (2) (3) (4) 

     
january extreme 0.665** 0.632** 0.646** 0.653** 
 (0.278) (0.282) (0.278) (0.283) 
february extreme -0.0436 0.05 -0.104 -0.009 
 (0.232) (0.24) (0.235) (0.243) 
march extreme -0.137 -0.0499 -0.0485 0.0241 
 (0.213) (0.223) (0.212) (0.225) 
april extreme -0.118 -0.189 -0.0931 -0.141 
 (0.203) (0.216) (0.206) (0.217) 

may extreme -0.0698 -0.0884 -0.14 -0.154 
 (0.210) (0.227) (0.211) (0.228) 
june extreme 0.279 0.266 0.584** 0.518* 
 (0.263) (0.27) (0.276) (0.28) 
july extreme -0.661** -0.561* -0.543* -0.452 
 (0.299) (0.301) (0.296) (0.305) 
august extreme 0.208 0.0946 0.245 0.156 
 (0.244) (0.25) (0.243) (0.25) 
september extreme 0.188 0.205 0.0621 0.0958 
 (0.190) (0.188) (0.19) (0.189) 
october extreme 0.249 0.0221 0.281 0.0854 

 (0.233) (0.236) (0.237) (0.240) 
november extreme -0.0305 -0.0864 0.147 0.0731 
 (0.253) (0.262) (0.258) (0.270) 
december extreme 0.0825 0.106 0.115 0.135 
 (0.264) (0.261) (0.257) (0.259) 
total -0.00071 -0.00071   
 (0.000517) (0.000533)   
irr   -2.12e-05 0.00053 
   (0.00101) (0.00097) 
hydel   -0.0875*** -0.0803*** 
   (0.0221) (0.0227) 
multi   -0.00823 -0.00462 

   (0.0227) (0.0229) 
popdenl 0.503 0.729* 0.348** 0.445** 
 (0.443) (0.436) (0.156) (0.171) 
Constant 1.659 1.894 2.336* 2.961* 
 (1.172) (1.353) (1.307) (1.535) 

Observations 595 595 591 591 
Time Effects N Y N Y 
Region Effects Y Y Y Y 
Note: Dependent variable is natural log of population affected (popaffl). Standard errors in 

parentheses. *** p<0.01, ** p<0.05, * p<0.1 
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PCSE Estimates 

Since there are relatively large number of time periods compared to the 

cross-sectional units, there is a possibility that the pooled dataset used for 

the analysis has cross-sectional dependence. If so, the error terms will 

violate the assumptions for OLS estimation. The study employs Pesaran‘s 

test to check for violation (Pesaran, 2004; De Hoyos and Sarafidis, 2006). 

The test concludes that the models under fixed effect specifications are 

indeed cross-sectionally dependent. Correcting for panel 

heteroskedasticity and correlated errors, the study incorporates panel level 

first order autoregressive error structure to account for panel-level 

autocorrelation.   

 

The direction of impacts of standardized weather anomalies 

(reported in Table 5), for both JJAS and OND, remain same across all 

model variants. While the magnitude of JJAS anomaly remains similar 

throughout specifications, i.e., with or without panel specific correlation, 

the estimated standard errors are found consistently smaller for the PCSE 

estimations. Due to unbalanced panel structure, the model could not 

incorporate year fixed effects as including them makes the variance-

covariance matrix singular. Under this model specification, dams appear 

to reduce the proportion of flood affected population. There is weak 

evidence that irrigation dams and multipurpose dams could reduce 

adverse effects of floods. Introduction of region fixed effects significantly 

reduce the impact magnitude of total number of dams making them 

statistically insignificant but does not change the sign of the coefficient. 

This suggests that at the regional scale factors other than the total 

number of dams could play an important role in reducing proportion of 

flood affected population. 
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Table 5: Estimates of Models with Standardized Rainfall 

Anomalies 

VARIABLES (1) (2) (3) (4) (5) (6) 

(PPit)       

       

a_jjas 0.0225*** 0.0220*** 0.0233*** 0.0238*** 0.0233*** 0.0251*** 

 (0.00658) (0.00585) (0.00604) (0.00680) (0.00598) (0.00615) 

a_ond -0.00473 -0.00149 -0.00174 -0.00397 -0.000926 -0.00138 

 (0.00596) (0.00494) (0.00498) (0.00608) (0.00504) (0.00507) 

Irr    -1.96e-05 -7.16e-05** 4.71e-05 

    (2.81e-05) (3.18e-05) (3.20e-05) 

hydel    -0.000552 -0.000287 0.000977 

    (0.000546) (0.00154) (0.00202) 

multi    -0.00108 -0.000419 -0.00156* 

    (0.000704) (0.000872) (0.000888) 

total -6.45e-
05*** 

-8.08e-
05*** 

-3.84e-06    

 (1.01e-05) (2.52e-05) (1.03e-05)    

Constant 0.0791*** 0.0899*** 0.122*** 0.0840*** 0.0933*** 0.124*** 

 (0.00744) (0.0142) (0.0375) (0.00781) (0.0128) (0.0341) 

       

Observations 796 796 796 790 790 790 

R-squared 0.030 0.049 0.064 0.034 0.053 0.068 

Autocorrelation  PS PS  PS PS 

Region FE   YES   YES 

Note: Dependent variable is Proportion of population affected (PPit). Standard errors in 
parentheses. PS is Panel Specific AR (1). *** p<0.01, ** p<0.05, * p<0.1 
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Table 6:  Estimates of Models with Rainfall Extremes  

VARIABLES(PAAi) 1 2 3 4 

january ext. 0.261** 0.0975 0.134 0.0748*** 
 (0.127) (0.133) (0.135) (0.0172) 
february ext. -0.114 -0.172 -0.102 0.0537*** 
 (0.111) (0.106) (0.105) (0.0183) 
march ext. -0.211*** -0.194*** -0.163** -0.00985 
 (0.0757) (0.0658) (0.0659) (0.0165) 
april ext. -0.0183 0.245*** 0.255*** -0.0423*** 
 (0.0805) (0.0855) (0.0836) (0.0130) 
may ext. -0.139* 0.0318 -0.00152 -0.0315** 

 (0.0761) (0.0766) (0.0739) (0.0135) 
june ext. -0.777*** -0.499*** -0.510*** -0.0250 
 (0.127) (0.0903) (0.0932) (0.0158) 
july ext. -0.430*** -0.273*** -0.266*** -0.0408** 
 (0.109) (0.0755) (0.0800) (0.0164) 
august ext. 0.0658 -0.0208 -0.0328 -0.0172* 
 (0.110) (0.0868) (0.0901) (0.0101) 
september ext. 0.161 0.00668 -0.000379 -0.0205** 
 (0.102) (0.0794) (0.0828) (0.00909) 
october ext. -0.150* -0.130** -0.170*** -0.0214* 
 (0.0870) (0.0549) (0.0572) (0.0121) 
november ext. -0.247*** -0.0472 -0.167** -0.000262 
 (0.0945) (0.0765) (0.0792) (0.0153) 
december ext. -0.0768 -0.110** -0.115* 0.0336** 
 (0.0762) (0.0555) (0.0589) (0.0135) 
total -0.0005*** 0.000797*** 0.00131*** 0.000318*** 
 (4.52e-05) (0.000160) (0.000160) (7.65e-05) 
popden 4,768*** 2,966*** 3,700*** 3,170*** 
 (195.5) (195.9) (155.9) (112.9) 
Constant 0.562*** 0.309*** 0.792*** 0.233*** 
 (0.0522) (0.0499) (0.0508) (0.0186) 
Observations 1,025 1,025 1,025 1,025 

R-squared 0.475 0.580 0.605 0.702 

Region FE  Yes Yes  
Year FE   Yes  
Autocorrelation    PS 
Note: Dependent variable is mean of absolute deviation of population affected (PAAi). 

Standard errors in parentheses. PS is Panel Specific AR (1). *** p<0.01, ** 

p<0.05, * p<0.1 

 

Table 6 reports the impact of monthly extreme weather events 

on anomalies in the population affected by floods. The table has 4 
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columns each corresponding to different combinations of region and year 

fixed effects, and panel specific correlation. A quick glance across shows 

that including region and year fixed effects has increased the precision of 

estimates for total number of dams. Extreme rainfall events in January 

(Column 1 and 4), February (Column 4), April (Column 2 and 3), and 

December (Column 4) positively influence the anomaly of population 

affected relative to their longer-term average. The effects of rainfall 

extremes during the other months, in contrast, is negatively associated 

with the reported flood damages. Thus, the results suggest that off-

season extreme rainfall increases the prospects for flood induced 

damages. This is because there is very little or no seasonal rain during 

the off-season. In such times extreme rain may come as a surprise 

allowing little or no preparedness by the population. On the contrary, 

rainfall during monsoon season is generally much higher compared to 

off-season rainfall. Hence, extreme rainfall during monsoon months that 

occur over and above the monsoon rainfall leads to less adverse impact 

due to relatively more preparedness of the affected population. 

 

The variable of interest, total number of dams, positively impacts 

flood damages even after controlling for population density. Moreover, a 

steady declining standard error (Columns 2 to 4) with inclusion of region 

fixed effects or correction of panel dependence verifies presence of 

unobserved spatial heterogeneity in damages which are related to dams. 

Increase in total number of dams increases the anomaly of the population 

affected as compared to its longer-term trends (Columns 2 and 3), raising 

suspicion on the role of dams in the presence of rainfall extremes. This 

indicates that rather than acting as a flood protection mechanism, 

presence of more dams on average has contributed to the increases in 

flood damages in the country. 

 

The estimates with different types of dams included in the model 

specification along with monthly extreme rainfall events reiterates that the 

off-season extreme rainfall positively influences the anomaly of population 

affected. The number of large dams for irrigation tend to adversely 
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influence the flood impacts due to rainfall extremes, whereas the dams for 

hydroelectric power generation and multipurpose dams tend to reduce the 

flood affected population moderately.  

 

Limitations and Conclusions 

This study assesses the impacts of floods on state population in India 

induced by extreme rainfall in the presence of dams and answers 

whether or not large dams make their neighborhood more vulnerable. 

The study uses the FGLS method for estimating the effects of rainfall 

extremes on flood damages while assessing the role of dams in 

modulating these damages. The PCSE approach has been employed to 

correct for contemporaneous correlations and cross-sectional 

dependence.  Results suggest that dams have influence on the affected 

population during a flood event. Irrigation dams do not necessarily 

increase the flood affected population due to extreme rainfall events. 

However, such projects may help in reducing the proportion of 

population affected due to floods. Dams for hydroelectric power 

generation and multipurpose dams are also likely to reduce affected 

population at margins. Dams for hydroelectric power may help in 

reducing the population affected due to extreme rainfall, whereas other 

types of dams do not have such effects. The results also suggest that 

while dams may have proved useful in averting the normal rainfall 

induced floods, their role in averting extreme rainfall induced floods is 

limited. In fact, under extreme rainfall situations dams, unless regulated 

effectively, may further exacerbate the flood impacts. 

 

Due to non-availability of disaggregated data in damage and 

rainfall at a finer spatial and temporal scale, the study potentially falls 

short in completely isolating the effect of rainfall anomaly from other 

confounding variables affecting damages. Therefore, the reported 

estimates may not be causal in nature. The model specification used 

assumes that the effect of precipitation is regionally immediate and 

bounded by state boundaries. In case of the precipitation data, monthly 

averages mollify the effects of outliers which are likely the extreme 



23 

events. For simplicity, the cascading effects of floods in event of dam 

failure are completely ignored. The model also assumes in some stages a 

first order autoregressive structure of autocorrelation in flood damages. 

The choice of order, in this case, is heuristic at best. 

 

Developed countries in North America and Europe stopped 

building large dams in the early 1980s as the associated social and 

environmental costs became unacceptable (Moran et. al., 2018). India 

should carefully assess its strategy on large dams in face of increased 

risk from climate change. The new Dam Safety Bill passed in 2019 is a 

promising way ahead (Mishra and Kaur, 2019). It necessitates setting up 

two national bodies and two state bodies to resolve, monitor, provide 

technical assistance, and maintain the dams. Any failure or breach needs 

to be reported to the national bodies for further investigation. The bill 

also mandates pre and post monsoon inspection of dams along with 

inspections before and after earthquakes, floods, or any distress, 

annually. The dam owners (states, central public sector undertakings, 

and private sectors) are to chalk out emergency action plan for every 

dam including an inundation map. However, as things stand, 93 percent 

of Indian dams lack such plans (CAG, 2017). In addition to legislative 

regulations, early warnings and forecasting should be made available to 

the vulnerable population to facilitate adequate precautionary measures 

to be undertaken at micro level. Flood risks due to dam failures can also 

be mitigated by automatic calibration of sluice gate operations between 

and across the dammed rivers. In sum, one must recognize that large 

dams are not purely engineering phenomenon, especially in the era of 

climate change.  It seems pertinent for India to establish expert 

committees that deliberate on the need for large dams in future along 

with their design features, and facilitate establishment of a flexible water 

governance regime in the country.  

 

 

  



24 

REFERENCES 

 

Ali, H., P. Modi and  V. Mishra (2019), Increased Flood Risk in Indian 

sub-Continent Under the Warming Climate, Weather and Climate 

Extremes, 25(100212). 

CAG (2017), Schemes for Flood Control and Flood Forecasting, Report 

No. 10, Comptroller and Auditor General of India, Ministry of 

Water Resources, River Development and Ganga Rejuvenation. 

Carleton, T. A.  and  S. Hsiang (2016), Social and Economic Impacts of 

Climate, Science, 35(6304). 

Central Water Commission, (2020), Compendium on Sedimentation of 

Reservoirs in India, Water Planning and Projects Wing, New 

Delhi, Government of India. 

Central Water Commission (2019), Water and Related Statistics. 

Department of Water Resources, RD  and  GR. New Delhi, 

Ministry of Jal Shakti. 

Central Water Commission (2018), National Register of Large Dams, 

Delhi, Government of India. 

Chaudhuri, H., M. Shinde  and  J. Oh (2010), Understanding of 

Anomalous Indian Summer Monsoon Rainfall of 2002 and 1994, 

Quarternary International, 213, 20-32. 

Chen, A., M.  Giese and  D. Chen (2020), Flood impact on Mainland 

Southeast Asia between 1985 and 2018—The Role of Tropical 

Cyclones, Journal of Flood Risk Management, 1-13. 

Chowdary, J., G. Srinivas, Y. Du, K. Gopinath, C. Gnanaseelan,  

A.  Parekh, and P. Singh (2019), Month-to-Month Variability of 

Indian Summer Monsoon Rainfall in 2016: Role of the Indo-

Pacific Climatic Conditions, Climate Dynamics, 52, 1157-1171. 

 



25 

Cimato, F. and M. Mullan (2010), Adapting to Climate Change: Analysing 

the Role of Government, Paper 1, Defra Evidence and Analysis 

Series, DEFRA, U.K. (https://assets.publishing.service.gov.uk/ 

government/uploads/system/uploads/attachment_data/file/69194

/pb13341-analysing-role-government-100122.pdf).   

Comptroller and Auditor General of India (2017), Report No. 10 of 

Comptroller and Auditor General of India on Schemes for Flood 

Control and Flood Forecasting, Delhi, Ministry of Water 

Resources, River Development and Ganga Rejuvenation. 

Damle, D. (2021), Dam Safety in India, New Delhi, National Institute of 

Public Finance and Policy. 

Davenport, F. V., M.  Burke and  N. S. Diffenbaugh (2021), Contribution 

of Historical Precipitation Change to US Flood Damages, 

Proceedings of National Academy of Sciences, 118(4), 1-7. 

De Hoyos, R. E.  and  V. Sarafidis (2006), Testing for Cross-Sectional 

Dependence in Panel-Data Models, The Stata Journal, 6(4), 482-

496. 

D'Souza, R. (2003), Damming the Mahanadi River: The Emergence of 

Multi-Purpose River Valley Development in India (1943-46), The 

Indian Economic  and  Social History Review, 40(1), 81-105. 

Duflo, E. and  R. Pande (2007), Dams, Quarterly Journal of Economics, 

102(2), 601-646. 

Goodland, R. (2010), Viewpoint - The World Bank Versus The World 

Commission on Dams, Water Alternatives, 3(2), 384-398. 

Goswami, B., V. Venugopal,  D. Sengupta, M. Madhusoodanan and   

P. Xavier (2006). Increasing Trend of Extreme Rain Events Over 

India in a Warming Environment, Science, 314, 1442-1445. 

Huber, D. G. and   J. Gulledge (2011), Extreme Weather and Climate 

Change, Arlingtion, USA: Center of Climate nd Energy Solutions. 

https://assets.publishing.service.gov.uk/%0bgovernment/uploads/system/uploads/attachment_data/file/69194/pb13341-analysing-role-government-100122.pdf
https://assets.publishing.service.gov.uk/%0bgovernment/uploads/system/uploads/attachment_data/file/69194/pb13341-analysing-role-government-100122.pdf
https://assets.publishing.service.gov.uk/%0bgovernment/uploads/system/uploads/attachment_data/file/69194/pb13341-analysing-role-government-100122.pdf


26 

Mishra, P.  and  P. Kaur (2019), The Dam Safety Bill, 2019, PRS 

Legislative Research, New Delhi, Institute for Policy Research 

Studies. 

Moran, E. F., M. C. Lopez, N. Moore, N. Müller and  D. W. Hyndman 

(2018), Sustainable Hydropower in the 21st Century, Proceedings 

of the National Academy of Sciences, 115(47), 11891-11898. 

Mukherjee, S., S. Aadhar, D. Stone and  V. Mishra (2018), Increase in 

Extreme Precipitation Events Under Anthropogenic Warming in 

India, Weather and Climate Extremes, 20, 45-53. 

Paprotny, D., A. Sebastian, O. Morales-Nápoles and  S.N. Jonkman 

(2018), Trends in Flood Lossess in Europe Over the Past 150 

Years, Nature Communications (1985), 1-12. 

Parida, Y. (2020), Economic Impact of Floods in the Indian States, 

Environment and Development Economics, 25(3), 267-290. 

Parida, Y., S. Saini and  J. Roy Chowdhury (2021), Economic Growth in 

the Aftermath of Floods in Indian States, Environment, 

Development and Sustainability, 23, 535-561. 

Pathak, S. (2020), Comparing Floods in Kerala and the Himalaya, 

Economic and Political Weekly, 55(5). 

Patt, A. G.,  D. P. van Vuuren, F.Berkhout,  A. Aah, A.F.eim, Hof,  

M.,  Isaac, and  Mechler, R. (2010). Adaptation in integrated 

assessment modeling: where do we stand? Climatic Change, 99, 

383-402. 

Perera, D., Seidou, O., Agnihotri, J., Rasmy, M., Smakhtin, V., P.,  

Coulibaly, and  H. Mehmood (2019), Flood Early Warning 

Systems: A Review of Benefits, Challenges And Prospects. 

Hamiton, Canada, United Nations University for Water, 

Environment and Health. 



27 

Pesaran, M. H. (2004), General Diagnostic Tests for Cross Section 

Dependence in Panels. Bonn, Germany, Instittute for the Study 

of Labor (IZA). 

Reserve Bank of India (2019), Handbook of Statistics on Indian States, 

Mumbai, Reserve Bank of India. 

Shastri, H., S. Ghosh and S. Karmakar (2017), Improving Global Forecast 

System of Extreme Precipitation Events with Regional Statistical 

Model, Application of Quantile-Based Probabilistic Forecasts. 

Journal of Geophysical Research: Atmospheres, 122, 1617-1624. 

Tazen, F., A. Diarra, Kabore, B. Ibrahim, M. Bologo/Traoré, K.,  Traoré, 

and  H. Karambiri (2019), Trends in Flood Events And Their 

Relationship to Extreme Rainfall in an Urban Area of Sahelian 

West Africa, The Case Study of Ouagadougou, Burkina Faso, 

Journal of Flood Risk Management, 12, 1-11. 

Thakkar, H. (2018), Role of Dams in Kerala's Flood Disaster, Economic 

and Political Weekly, 53(38). 

Wamer, K. and T. Afifi (2014), Where the Rain Falls: Evidence from 8 

Countries on How Vulnerable Households Use Migration to 

Manage The Risk of Rainfall Variability and Food Insecurity, 

Climate and Development, 6(1), 1-17. 

Yan, C., H. Tian, X. Wan, J. He, G. Ren, U. Büntgen, N. Stenseth, and Z. 

Zhang (2021), Climate Change Affected The Spatio-Temporal 

Occurrence of Disasters in China Over the Past Five Centuries, 

Royal Society Open Science, 200731(8). 

 



MSE Monographs  

* Monograph 34/2015 

Farm Production Diversity, Household Dietary Diversity and Women’s BMI: A Study of 

Rural Indian Farm Households  

Brinda Viswanathan 

* Monograph 35/2016 

Valuation of Coastal and Marine Ecosystem Services in India: Macro Assessment 

K. S. Kavi Kumar, Lavanya Ravikanth Anneboina, Ramachandra Bhatta, P. Naren,  

Megha Nath, Abhijit Sharan, Pranab Mukhopadhyay, Santadas Ghosh,  

Vanessa da Costa and Sulochana Pednekar 

* Monograph 36/2017 

Underlying Drivers of India’s Potential Growth 

C.Rangarajan and D.K. Srivastava  

* Monograph 37/2018 

India: The Need for Good Macro Policies (4th Dr. Raja J. Chelliah Memorial Lecture) 

Ashok K. Lahiri 

* Monograph 38/2018 

Finances of Tamil Nadu Government 

K R Shanmugam 

* Monograph 39/2018 

Growth Dynamics of Tamil Nadu Economy 

K R Shanmugam 

* Monograph 40/2018 

Goods and Services Tax: Revenue Implications and RNR for Tamil Nadu 

D.K. Srivastava, K.R. Shanmugam 

* Monograph 41/2018 

Medium Term Macro Econometric Model of the Indian Economy 

D.K. Srivastava, K.R. Shanmugam 

* Monograph 42/2018 

A Macro-Econometric Model of the Indian Economy Based on Quarterly Data 

D.K. Srivastava 

* Monograph 43/2019 

The Evolving GST 

Indira Rajaraman 



WORKING PAPER 223/2022 

Agnij Sur 

K.S. Kavi Kumar 

 Anubhab Pattanayak 

ADAPTATION TO RAINFALL EXTREMES:  

ROLE OF DAMS IN INDIA 

MADRAS SCHOOL OF ECONOMICS 
Gandhi Mandapam Road 

Chennai 600 025  
India  

 
July 2022 

MSE Working Papers 

Recent Issues  

* Working papers are downloadable from MSE website http://www.mse.ac.in    

$ Restricted circulation  

* Working Paper 214/2022 

Predicting Power of Ticker Search Volume in Indian Stock Market 

Ishani Chaudhuri and Parthajit Kayal  

* Working Paper 215/2022 

How Much Does Volatility Influence Stock Market Returns? – Empirical Evidence 

from India 

Malvika Saraf and Parthajit Kayal  

* Working Paper 216/2022 

Multiple Dimensions of Cyclicality in Investing 

Thillaikkoothan Palanichamy and Parthajit Kayal 

* Working Paper 217/2022 

Socio-Economic Factors and Conflicts in North-Eastern Region of India 

Nabeel Asharaf and Brinda Viswanathan 

* Working Paper 218/2022 

Political Concentration, Religious Diversity and Human Development: Evidence 

from Indian 

Shrabani Mukherjee and Vivek Sharadadevi Jadhav 

* Working Paper 219/2022 

Outcome of FPTP in Diversified Society: Evidence on Disproportionality from 

Loksabha Constituencies 

Vivek Jadhav 

* Working Paper 220/2022 

Medium-term Projections of Vehicle Ownership, Energy Demand and Vehicular 

Emissions in India 

B. Ajay Krishna 

* Working Paper 221/2022 

Evolving Issues and Future Directions in GST Reform in India 

M. Govinda Rao 

* Working Paper 222/2022 

Intergovernmental Fiscal Relations in India: Time for the Next Generation of 

Reforms 

D.K. Srivastava 

http://www.mse.ac.in



